Small hyperbolic polyhedra
نویسندگان
چکیده
منابع مشابه
Hyperideal polyhedra in hyperbolic manifolds
Let (M, ∂M) be a 3-manifold with incompressible boundary that admits a convex co-compact hyperbolic metric (but is not a solid torus). We consider the hyperbolic metrics on M such that ∂M looks locally like a hyperideal polyhedron, and we characterize the possible dihedral angles. We find as special cases the results of Bao and Bonahon [BB02] on hyperideal polyhedra, and those of Rousset [Rou02...
متن کاملOrganizing Volumes of Right-angled Hyperbolic Polyhedra
This article defines a pair of combinatorial operations on the combinatorial structure of compact right-angled hyperbolic polyhedra in dimension three called decomposition and edge surgery. It is shown that these operations simplify the combinatorics of such a polyhedron, while keeping it within the class of right-angled objects, until it is a disjoint union of Löbell polyhedra, a class of poly...
متن کاملConstructing Hyperbolic Polyhedra Using Newton's Method
We demonstrate how to construct three-dimensional compact hyperbolic polyhedra using Newton’s Method. Under the restriction that the dihedral angles are non-obtuse, Andreev’s Theorem [5, 6] provides as necessary and sufficient conditions five classes of linear inequalities for the dihedral angles of a compact hyperbolic polyhedron realizing a given combinatorial structure C. Andreev’s Theorem a...
متن کاملRigidity of Circle Polyhedra in the 2-sphere and of Hyperideal Polyhedra in Hyperbolic 3-space
We generalize Cauchy’s celebrated theorem on the global rigidity of convex polyhedra in Euclidean 3-space E to the context of circle polyhedra in the 2-sphere S. We prove that any two convex and proper non-unitary c-polyhedra with Möbiuscongruent faces that are consistently oriented are Möbius-congruent. Our result implies the global rigidity of convex inversive distance circle packings in the ...
متن کاملDirichlet Polyhedra for Cyclic Groups in Complex Hyperbolic Space
We prove that the Dirichlet fundamental polyhedron for a cyclic group generated by a unipotent or hyperbolic element y acting on complex hyperbolic «-space centered at an arbitrary point w is bounded by the two hypersurfaces equidistant from the pairs w, yw and w,y~lw respectively. The proof relies on a convexity property of the distance to an isometric flow containing y.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Pacific Journal of Mathematics
سال: 2012
ISSN: 0030-8730,0030-8730
DOI: 10.2140/pjm.2012.255.191